SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

CodeZine編集部では、現場で活躍するデベロッパーをスターにするためのカンファレンス「Developers Summit」や、エンジニアの生きざまをブーストするためのイベント「Developers Boost」など、さまざまなカンファレンスを企画・運営しています。

大規模解析サービスを支えるGCP活用事例

大規模サービスにおけるオートスケーリングを構成する上で考慮すべきポイント

大規模解析サービスを支えるGCP活用事例 第4回

  • X ポスト
  • このエントリーをはてなブックマークに追加

 予測可能なデータ、また少量のデータを処理するサービスではコンピュータリソースの準備は比較的簡単です。しかし予測が難しい大量のデータを処理しなければならない解析サービスにおいてはコンピュータリソースのオートスケーリングは必要不可欠とも言えます。本稿では、大規模解析サービス「KARTE」で採用しているオートスケーリング構成について紹介します。

  • X ポスト
  • このエントリーをはてなブックマークに追加

※印刷用ページ表示機能はメンバーのみが利用可能です(登録無料)。

この記事は参考になりましたか?

  • X ポスト
  • このエントリーをはてなブックマークに追加
大規模解析サービスを支えるGCP活用事例連載記事一覧

もっと読む

この記事の著者

竹村尚彦(株式会社プレイド)(タケムラ ナオヒコ)

 株式会社プレイド エンジニア 2014年からプレイドで、インフラを中心にKARTEの裏側を全般的に担当。 プレイド入社前はNECにてクラウドサービスの立ち上げにエンジニアとして従事。 2011年、同志社大学工学部を卒業。

※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です

この記事は参考になりましたか?

この記事をシェア

  • X ポスト
  • このエントリーをはてなブックマークに追加
CodeZine(コードジン)
https://codezine.jp/article/detail/10522 2018/01/11 14:00

おすすめ

アクセスランキング

アクセスランキング

イベント

CodeZine編集部では、現場で活躍するデベロッパーをスターにするためのカンファレンス「Developers Summit」や、エンジニアの生きざまをブーストするためのイベント「Developers Boost」など、さまざまなカンファレンスを企画・運営しています。

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング