機械学習を活用し、クロスデバイス計測を実現
「アドエビス」は、広告効果測定ツール市場で3年連続シェアNo.1を誇るツールだ。導入実績は9000件を超え、アクセスデータは年間120億件以上を計測している。その「アドエビス」が提供開始した「クロスデバイス機能」は、どのような課題を解決するために生まれたものなのだろうか。
「例えば、ある人が自宅のパソコンでWeb広告をクリックし、遷移先のサイトで商品の情報を見たけれど、その時は商品の購入に至らなかったとします。そして翌朝、通勤中にスマートフォンでブラウザを開き、昨日見ていた商品をもう一度調べて、購入に至るケースはよくあると思います。ここで、ある問題が生じます。これまでの広告効果測定は基本的に各デバイスが持つCookie情報からユーザーを判別しているため、パソコンとスマートフォンではCookieが異なり別の人と判定されてしまうのです」
この事象が起きると、効果測定に不都合が生じる。例えば、1000万円の費用をかけてWeb広告を出稿するとしよう。クロスデバイスを考慮しない広告効果測定の場合、前述のシチュエーションが起きると、広告クリック後のコンバージョン率が低く判定されてしまうのだ。そして広告は効果が低いとみなされて取りやめになる。その結果、購入数が激減するという事態が起こりうる。デバイスをまたぐアクセスだけでなく、デバイスが同一であってもCookieを共有できない、異なるブラウザやアプリ間で発生するアクセスにも同様のことが言える。
複数のデバイスをまたがって最終的にコンバージョンに至ることをクロスデバイスコンバージョンという。現在ではその割合が全体の40%ほどを占める。だからこそ、広告効果測定においてはクロスデバイスユーザーの判別が非常に重要になってきている。
それを実現するため、同社は機械学習による分析基盤の構築を行った。ユーザーエージェントやIPアドレス、アクセス時間帯といった膨大な種類のアクセスデータと教師データを用いて、ユーザーを類推していったという。
このプロジェクトでは、大きく分けて2つの要件をクリアする必要があった。
「1つ目はスケーラビリティです。最初は10社くらいの導入数だとしても、将来的には10倍にも100倍にも利用者が増えていきます。そうなったとしても、遅延なく分析結果をお客さまにご提供できなければいけません。課せられた目安は、4時間で100社分のデータを処理することでした。2つ目は精度です。これが担保できないと、そもそもサービスとして成り立ちません。ある意味で相反する2つの要素を、同時に改善し続けていく必要がありました」