Shoeisha Technology Media

CodeZine(コードジン)

特集ページ一覧

著者情報

  • Kamuela Lau(カムエラ ラウ)

     米国ハワイ州出身。2014年に米国マサチューセッツ州の Williams College を物理学と日本語学の二重専攻で卒業後来日。株式会社ロンウイットでランキング学習など機械学習を中心に、製品開発や顧客コンサルティングの業務に従事。他に自然言語処理や情報検索を勉強中。

執筆記事

  • 2018/12/17

    話題の「ランキング学習」とは? 回帰法・分類法との違いからモデル構築まで

     近年、「AI」という言葉をよく見かける背景には、機械学習を使った多様な手法による飛躍的進歩があります。この機械学習の主な手法の1つに「教師あり学習」があります。 教師あり学習には大きく分けて2つのタイプがあります。1つは、ある画像を「犬か否か」推定、あるいは「犬、猫、鳥」のどれに分類されるか推定する「分類」です。もう1つは、ある出来事が起こる確率を推定する「回帰」です。どちらのタイプも教師あり学習ではよく用いられますが、本記事で紹介する「ランキング学習」は一般的な「分類」や「回帰」とは 少し異...

1件中1~1件を表示
戻る


All contents copyright © 2005-2019 Shoeisha Co., Ltd. All rights reserved. ver.1.5