SHOEISHA iD

※旧SEメンバーシップ会員の方は、同じ登録情報(メールアドレス&パスワード)でログインいただけます

CodeZine編集部では、現場で活躍するデベロッパーをスターにするためのカンファレンス「Developers Summit」や、エンジニアの生きざまをブーストするためのイベント「Developers Boost」など、さまざまなカンファレンスを企画・運営しています。

これだけは押さえておきたい! AWSサービス最新アップデート

AWSが生成系AIに本格参入! Amazon BedrockなどAWSのAI関連の最新アップデート情報

第11回 Amazon Bedrock、Amazon Titan、生成系AI用新インスタンス、Amazon CodeWhisperer、Jupyter拡張機能

  • X ポスト
  • このエントリーをはてなブックマークに追加

 本連載では、AWSに関してなかなか時間がとれず最新のアップデートを追えていない方や、これからAWSを利用したいと考えている方に向けて、AWSから発表される数多あるサービスアップデートのうち、NTTデータのITスペシャリスト達がこれだけは押さえておくべきと厳選した内容を定期的に紹介します。本記事では、AWSの最新の生成系AIに関するアップデート情報を紹介します。

  • X ポスト
  • このエントリーをはてなブックマークに追加

はじめに

 現在、ChatGPTをはじめとしたGenerative AI(以下、生成系AI)が広く注目を集めており、連日のようにAIに関する新しいサービス、アップデート情報を目にするようになっています。市場動向と同様にAWSも生成系AIへの大きな投資を行いビジネス拡大を狙っていくという発表もあり、この動きはさらに加速していきそうです。

 ここ数か月でも、生成系AIに関するアップデートも非常に増えており、今回はその中でも注目のアップデート情報についてご紹介したいと思います。

生成系AIサービスを構築するためのサービスが登場

AIの基盤モデルをAPI経由で利用できる「Amazon Bedrock」

 Amazon Bedrockは、主要なAIスタートアップやAmazonの基盤モデルをAPI経由で利用できるようにするフルマネージド型サービスです。

Bedrockで幅広い基盤モデルを簡単に利用可能
Bedrockで幅広い基盤モデルを簡単に利用可能

 基盤モデルとは、生成系AIで使用される機械学習モデルのことで、膨大な量のデータで事前にトレーニングされた数億以上のパラメータを持つ大規模なモデルのことです。

 基盤モデルは、パラメータサイズも学習させるデータ量も膨大なため、大量のコンピュートリソース(基本的にはGPUインスタンス)を必要とし、コストと時間がかかります。そのため、ビジネスの活用においては、公開されている基盤モデルをそのまま利用したり、自社データを利用して基盤モデルをカスタマイズして利用したりするケース(つまり、スクラッチで一から基盤モデルを作らないケース)も多いと思います。

 Amazon Bedrockは、AI21 Labs、Anthropic、Stabilability AIといった主要なAIスタートアップ企業や、Amazonが提供する基盤モデル(Amazon Titan)に簡単にアクセスし、自分たちに最適な基盤モデルを選択する機能をサーバレスで提供してくれます。

 また、数操作のみで、自社データを利用してモデルのカスタマイズを実現することができます。自社データには、機密情報があり外部に公開したくないというケースも多く存在すると思います。Amazon Bedrockを使うとデータは自分たちのS3に格納可能で、モデルのチューニングはVPC内で実行されるため、高いセキュリティ性を確保することができます。

 Amazon SageMakerの各種機能とも統合され、基盤モデルをテストするための実験管理やデプロイなどを効率的に行うことができます。

Amazonが提供する基盤モデル「Amazon Titan」

 Amazon Titanは、Amazonの20年以上に及ぶ機械学習の経験に基づいて構築された基盤モデルです。現在2種類の基盤モデルを提供しており、テキストに関する様々なタスクに対応することができます。

  • Titan Text:要約やテキスト生成(ブログ記事の作成など)、分類、Q&A、情報抽出等のタスクのための生成系基盤モデル。
  • Titan Embeddings:テキストデータ(単語、文章)を、「埋め込み表現(※)」に変換する基盤モデル。数値表現を比較することで、単語の単純なマッチングよりも関連性が高く文脈に沿った応答を生成できるため、パーソナライゼーションや検索などのアプリケーションで活用可能。

※ 埋め込み表現

 テキストデータを数値のベクトルに変換するプロセスです。この手法を使用することで、テキストデータを機械学習や自然言語処理のアルゴリズムに適用することができます。例えば、例えば、"king"と"queen"は似たような文脈で使われることが多いため、ベクトルの類似度も大きくなるなど文章の類似度を定量評価することができます。

 Amazon Bedrock、Amazon Titanともに残念ながらまだ一般利用はできないですが、幅広い基盤モデルに簡単にアクセスでき、セキュリティや信頼性も高いAmazon Bedrockの活用を大いに期待しています。

次のページ
生成系AI用の新しいインスタンスが登場

この記事は参考になりましたか?

  • X ポスト
  • このエントリーをはてなブックマークに追加
これだけは押さえておきたい! AWSサービス最新アップデート連載記事一覧

もっと読む

この記事の著者

石田 浩晃(株式会社NTTデータ)(イシダ ヒロアキ)

 NTTデータ入社以来、金融機関様向けのシステム開発に従事。現在では、金融機関様向けに、クラウドサービスを活用したAIサービスの企画開発やデータ利活用支援といったプロジェクトに携わる。

※プロフィールは、執筆時点、または直近の記事の寄稿時点での内容です

この記事は参考になりましたか?

この記事をシェア

  • X ポスト
  • このエントリーをはてなブックマークに追加
CodeZine(コードジン)
https://codezine.jp/article/detail/18034 2023/07/19 11:00

おすすめ

アクセスランキング

アクセスランキング

イベント

CodeZine編集部では、現場で活躍するデベロッパーをスターにするためのカンファレンス「Developers Summit」や、エンジニアの生きざまをブーストするためのイベント「Developers Boost」など、さまざまなカンファレンスを企画・運営しています。

新規会員登録無料のご案内

  • ・全ての過去記事が閲覧できます
  • ・会員限定メルマガを受信できます

メールバックナンバー

アクセスランキング

アクセスランキング